
Fast, Full Chip Image Stitching  
of Nanoscale Integrated Circuits 

 
David Zhang, Gooitzen van der Wal, Phil Miller, David Stoker,  
Erik Matlin, Naveen Marri, Gary Gan, Joe Zhang, Jane Asmuth, 

Sek Chai, David Weaver, Michael Piacentino,  
SRI International,  

Princeton, NJ 08540 
Email: david.weaver@sri.com 

Scott Silverman, Michael DiBattista, Robert Chivas,  
Christopher G. L. Ferri, David Taylor, Jordan Furlong,  

Thomas Harper, Dustin Kobs, 
Varioscale, Inc,  

San Marcos, CA 92078 
Email: agman@varioscale.com

Abstract— The rapid progression of semiconductor 
technology has significantly impacted the ability to examine and 
analyze complex integrated circuits (ICs). Small device feature 
sizes, combined with large die sizes, add a heavy processing 
burden that severely limits our timely ability to perform defect 
validation and anti-tampering analysis at full scale.  

In this paper, we describe the algorithmic steps taken in the 
processing pipeline to quickly create a global image database of 
an entire advanced IC. We focused specifically on the image 
alignment and stitching algorithms necessary to support a 
combined field-of-view of a given layer of a die. We describe key 
algorithmic challenges such as contextual semantics that limits 
the robustness of the alignment algorithm. We also describe the 
use of database indexing to manage and traverse the enormous 
amounts of data. 
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I. INTRODUCTION 
Large area de-processing [1] and nanometer scale imaging 

tools [2] are now available. For example, a plasma source FIB-
SEM approach can delayer large chip area by removing IC 
materials [3]. However, defect validation in failure analysis 
cases and anti-tampering verification of state-of-art ICs can 
only be performed in isolation with limited scope and speed in 
analysis. Full scale analyses of the whole IC die are 
problematic because, as minimum device feature size shrink 
and the number of devices multiply, the complexity of the 
image processing and the size of the global IC image data base 
poses an ever-challenging workload. Full scale IC analysis is 
important because state-of-art IC are particularly vulnerable to 
insertion of sparse modification that are difficult to identify and 
can compromise critical functionality and reliability.  

For large chip dies, the challenges in chip delayering is the 
consistency and robustness. That is, the surface quality needs 
to be good and uniform so that image quality does not degrade. 
Furthermore, the surface plane should be planar such that 
imaging can be consistent on a single IC layer. For example, a 
bevel delayering output would cut across multiple IC layers 
including metal and via layers. Furthermore, with non-planar 
transistors in small geometry transistors, ultra-planar 
delayering may be important to properly extract transistor 
circuitry from captured images. 

DISTRIBUTION STATEMENT A. Approved for public 
release: distribution is unlimited.  

 

This paper is structured as follows: Section II provides 
background information on our teardown system and 
workflow. Section III provides details on the algorithmic steps 
to align and stitch SEM images and quickly create a global 
image database of the IC. Section IV includes results and 
analysis of algorithms. We conclude this paper in Section V.  

II. BACKGROUND 

A. Image Processing System 
We have developed an image processing system and 

associated software stack SEM imagery. The image processing 
system hardware consists of heterogeneous processors 
(multicore CPU and GPUs) connected to high density memory 
storage system. We use an Infiniband network switch to 
provide high bandwidth access between the processors and 
memory storage. As shown in Figure 1, the system is housed in 
a server cabinet as the high performance computing companion 
to the Zeiss MultiSEM (mSEM). We structured the hardware 
in a streaming fashion such that we can process images as they 
are captured by the mSEM. 

 
Fig. 1. Image processing pipeline of de-processed chip 

The system runs a software application developed to 
interface with the mSEM, process the captured images, and 
store the imagery into the storage system. The dataflow 
diagram in Figure 1 illustrates the image processing steps, 
including image alignment, structure analysis and structure 
extraction. Figure 2 presents the resulting data from image 
processing steps. The system also analyzes and generates 
metadata related to the imagery, including alignment, structure, 
and other parameters. We have developed an interactive 
visualization tool that allows the operator to visually see the 
images, its associated quality, and the metadata in a manner 
that supports an efficient delayering workflow. 
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Fig. 2. Example processed output from data capture (left), alignment 

(middle), and structure generation (right) 

B. Image Processing Software  
In this paper, we focus on the image alignment processing 

stage that enables robust stitching results across imaging and 
common delayering issues. Proper alignment is critical to the 
performance of preceding image processing steps, and as such, 
requires strong scrutiny and effort for robustness sake. 
Traditionally, stitching algorithms are designed for natural 
scenes, and natural images are visually more forgiving. In 
comparison, circuit images have edge-based content, and less 
texture/color content. Circuit images have more repetitive 
patterns, which makes traditional stitching algorithms fail to 
match corresponding points in overlap regions. For example, 
images where single directional interconnect wires dominate, 
picket-fence artifacts may make the image registration difficult, 
and in turn, produces poor quality stitches.  

III.  IMAGE STITCHING AND ANALYSIS 
Our approach includes several processing steps to stitch 

together high-resolution circuit images to form a composite 
mosaic. First, we enhance the contrast and brightness in the 
overlap regions. These local enhancements bring out the 
delayering noise as features in the non-circuit areas to improve 
image registration. For example, polishing marks from 
mechanical polish may be useful for alignment purposes. As 
shown in Figure 3, the original circuit image may be visually 
dark. A simple histogram equalization may not be able to 
enhance all of the edge information in the image. Instead, using 
a contrast normalization step [4,5], we can enhance all high 
frequency content in the image so as to provide strong feature 

points for stitching. 
Second, we extract features points from the overlap regions 

and finding corresponding features in the common image 
regions. A key novelty here is the use of sampled feature points 
that are distributed across the overlap regions. As shown in 
Figure 4, feature points are sampled across distributed tiles 
because (1) Repeated patterns in circuit images can fool 
matching points, and (2) noisy patches on key dominant can 
throw off ranking of features.  

Specifically, in a traditional algorithm, the strongest feature 
points are used by first sorting the entire set of feature points in 
the overlap regions. However, if there are repetitive circuit 
structures, then it is difficult to disambiguate among the feature 
points. Also, if there are noisy patches (dust or artifacts 
introduced by chip delayering artifacts, electron discharge, then 
the list of feature points is skewed when considering the list as 
a whole. 

By sampling the feature points across tiles, the algorithm 
enforces the need to selectively sample across the overlap 
regions such that there is sufficient distribution of unique 
feature points for comparison. The number of feature points 
per tile region can be set as a threshold based on noise level of 
the imagery or when the tile has few textures. That is, more 
points may be needed when the tiles have few features or are 
noisy. This approach is similar to stitching aerial imagery 
where there are occlusions and many environmental effects. 

Figure 5 illustrates an example block diagram of the 
algorithm using the “Tile Norm ROI” approach (Figure 4). For 
every image overlap region, we perform the following 
processing steps: 

 
Fig. 3. Image stitching of high resolution of Multi-beam SEM images. Left side is the feature extraction per tile  

in the overlapped region, and right side is the matched points connected by a color line.  

 
Fig. 4. Image enhancement to improve the signal-to-noise (SNR)  

for image alignment 
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• Use enhanced image data to increase feature point 
detections. 

• Detect feature points evenly across overlap using 
tile-normalization.  

• Compute Feature Descriptors for each feature point. 
• Match feature pairs. Apply symmetric match to 

reduce false matches. 
• Apply motion and distance constraints to remove 

outliers 
• Inlier points are used for motion estimation between 

SEM images. 

 
Fig. 5. Example algorithm pipeline for image stitching  

for chip images using tiled feature points 

Note: “motion” refers to the displacement between two 
overlaps in translation, scale, and rotation. To address large 
number of seams in the composite mosaic image, we further 

disclose a bundle adjustment stage. 
In the third stage, we finely tune the registration parameters 

across multiple images as a bundle to refine the final 
registration result. Because most of the images have more than 
one neighbor, and not all image registrations are correct, we 
use bundle adjustment (BA) to optimize the image stitching. 
BA can be defined as simultaneously refining the alignment 
results for each image. The alignment coordinate refers to the 
3D vector that provides the best alignment for the overlap 
region. the net result of BA is the best fit adjustment based on 
minimizing the net error among the images. The output of BA 
is the new global coordinates of all images. In order to 
determine the global coordinates of each image, we solve the 
following optimization problem: 

 𝑎𝑟𝑔𝑚𝑖𝑛
'⃗

)∑ 𝑤,-.𝑅,-�⃗�, − �⃗�- − 𝑡,-3
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where 𝑥@ is the coordinate of image i, and 𝑅,- and 𝑡,- are 
rotation matrix and translation vector from image a to image b. 
𝑠@ is the reference coordinate (or fiducial point) for image i. 
These fiducial points are predetermined points as a reference to 
the circuits. 𝛽 is the regularization parameter, which controls 
how much influence 𝑠@	has.  𝑤,- is the weight for the motion 
estimate between image a and b. We use the number of 
matches as the weight to cast the vote in BA. The 
transformation with the most matches ‘wins’ and the change of 
the coordinates will be greatly influenced by that. Figure 6 is 
an example of mSEM bundle adjustment. Different color of 
circles represents the stage coordinates of images before and 
after BA. The reference point is the fiducial point that the 
mSEM image coordinates stay unchanged. 

This bundle adjustment step consists of an iterative 
refinement of the relative motion parameters for a group of 
images. The first BA is the refinement of the relative motions 
among subfield images per mSEM. Secondly, BA is applied to 
a region which includes hundreds and thousands of mSEM 

 
Fig. 6. mSEM bundle adjustment example. The green circle represents the stage positions of each image,  

and the red represents the updated positions by bundle adjustment. 
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images. The refinement can be extended to a physical layer or 
the entire layer of many physical layers.  

Two problems in image stitching is worthy of discussion 
here. First is the overlap percentage between images. The time 
requirement from image capturing enforces the overlap to be 
small. However, calibration error, charge distortion, stage drift 
and positioning error may fail the image registration that few 
matched points be obtained.  
 Our solution is to extend the short side of the ROI of each 
image in the overlap and increase the number of matches. 
Second problem comes from the incorrect motion estimates 
between subfields across two mSEM images. The displacement 
between any two subfields from two mSEM images should be 
identical. Many of the bad alignments come from picket-fence 
artifacts, by which the alignment falls to a local minimum 
solution depending on the initial relative stage positions.  
 We use a majority vote approach to first segment the bad 
and inconsistent motions from the majority good and consistent 
motions. We then prewarp these images based on the majority 
motion and then refine the motions. In cases that bad captures 
happen, that motion estimates among mSEMs do not have 
majority vote, we will exclude these images in BA and notify 
the system to recapture. 

IV. RESULTS AND ANALYSIS 

A. Image Processing Results 
We have processed through a number of mSEM images 

across a number of delayered IC layers. For brevity sake, we 
show one example in Figure 7 with mSEM images aligned 
with our image processing. We also show the resulting circuit 
structures extracted across the chip region (e.g. metal 
interconnect) as polygon from the stitched images. 

To improve processing speeds, image stitching is processed 
hierarchically.  Because of the sheer number of images (e.g. 1-
million single beam images for 1cm2 die at 4nm), we recognize 
the need for efficient memory access. Because the algorithm 
analyzes image overlaps between two spatially correlated 
mSEM images, we programmed an indexing scheme using R-
tree to index and query images in neighborhood of the image 
being processed. As shown in Figure 8, this in effect minimizes 
neighborhood search times as we scale to larger number of 
images. 

 
Fig. 8. Speeding up algorithm pipeline using databased indexing 

B. Additional Algorithms  
We also recognize the need for contextual information to 

improve alignment. For example, we explored the use of FFT 
to extract out structural based information of the circuit images. 
The frequency information has codified information about the 
dominant structure beyond what is available in the feature-
based approach. This FFT analysis is done over the larger 
image regions instead of the overlap regions. In doing so, we 
can then align and stitch images based on matching frequency 
content of the images. 

 
Fig. 7. Example stitched image and extracted circuit structure as polygons 
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In Figure 9, we show the 2D FFT information over a large 
image. If we do a similar 2D image over a smaller region of the 
image, we will find the same frequency signature. This is 
because the circuit layout is very repetitive, and circuits are 
often placed on a grid (for manufacturing). We can use the 
frequency information to line up signal peaks (e.g. along the x 
and y dimension) based on the grid structure. It is important to 
note that the frequency analysis does not include information 
about the contents of the circuits, but instead it provides the 
structural information about the circuit. In comparison to 
feature-based alignment, frequency-based alignment can be 
done at a larger global scale for lining up circuit images. 

V. CONCLUSION 
We describe a high-performance computing system 

(hardware and software) as companion image processing 
system to a multi-SEM. We focused this paper on the image 
alignment processing stage because there is fundamental need 
for robust stitching of high-resolution chip imagery to enable 
an integrated field-of-view of the entire chip. We describe the 
processing pipeline to address a number of challenges towards 
algorithm robustness, including low signal-to-noise and other 
imaging issues. We show how proper indexing can improve the 
search and retrieval of the design.  

Even with current image processing and computer vision 
techniques, we acknowledge that there are more research that 
can be done to improve robustness. For example, we show that 
additional global contextual information, such as grid patterns 
derived from FFT analysis, can provide additional alignment 
markers that support registration of local cells. Additional 
semantic information (e.g. standard cell patterns), derived from 
machine learning methods, could also be used. 
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Fig. 9. Example FFT output for differently sized image regions.  

We show that common structure information results in similar FFT output, which can be used for alignment. 
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